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Optimal stabilization of Boolean networks through collective influence
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Boolean networks have attracted much attention due to their wide applications in describing dynamics of
biological systems. During past decades, much effort has been invested in unveiling how network structure and
update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal
set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean
networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks
by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the
proposed collective influence algorithm on four different networks. Results show that the collective influence
algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our
work provides a new insight into the mechanism that determines the stability of Boolean networks, which may
find applications in identifying virulence genes that lead to serious diseases.
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I. INTRODUCTION

Boolean networks were proposed as a model of genetic
regulatory network by Kauffman in 1969 [1]. Unlike other
mathematical models using differential equations, a Boolean
network models the dynamics of a gene as a binary (on or
off) switch, while interactions among genes are represented by
Boolean functions. The large number of parameters describing
details of the regulatory dynamics, which often appear in other
models, are simply neglected in Boolean networks. Despite
this simplification, the Boolean network model is still able to
provide deep insights into the dynamics of various biochemical
systems [2–6], social networks [7,8], and economic systems
[9]. Due to their wide applications, Boolean network models
with various topology and update functions have attracted
much attention during past decades [10–13].

As the state space of a Boolean network is finite, there
must be a time when the system gets back to one of its
previous states. Given the deterministic dynamics, a Boolean
network will finally evolve along a cycled orbit, called an
attractor. The attractor is vital in the study of Boolean networks
because of its close relationship with numerous phenomena
in real-world complex systems. For example, in intracellular
regulation dynamics, it was found that attractors of the genetic
network that controls the yeast cell cycle match the actual
biological dynamics [14]. In multicellular organisms, such as
humans, attractors were believed to correspond to the varieties
of cells generated from cell differentiation [1]. One of the
key problems about attractors is the stability, i.e., the ability
to eliminate small perturbations as the system evolves. In an
unstable network, the whole system can be influenced by a very
small perturbation. Under this situation, the network dynamics
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is affected dramatically, usually leading to a system failure.
The stability of Boolean networks is crucial to understanding
the regulation of gene networks, as previous research indicated
that real-world genetic regulatory networks usually lie on the
critical region between stable and unstable [1], so that creatures
can not only survive most genetic mutations but also maintain
their diversity. Besides, the problem of stability is also relevant
to certain kinds of cancer [15], since cells in cancer tissue
exhibit much higher heterogeneity than normal ones [16].

In previous works, researchers have made great progress in
studying the stability of Boolean networks. In 1985, Derrida
et al. proposed the annealed approximation to predict the
stability of their random Boolean network model [17]. Since
then, other researchers have applied the annealed approxima-
tion to networks with various degree distributions and update
functions [18–20]. However, there are far more topological
features that cannot be described solely by degree distributions,
such as community structure, degree assortativity, and reci-
procity. It was not until 2009 when Pomerance et al. proposed
the semiannealed approximation that the stability analysis of
Boolean network models with arbitrary topology becomes
possible. With this method, researchers are able to broaden
their research to problems in a variety of Boolean network
models constructed from real biological systems, such as the
stability of Boolean multilevel networks [21] and the joint
effects of topology and update rules on the stability of Boolean
networks [22].

Previous research mainly studied the stability of Boolean
networks on a macroscopic scale. However, due to the vast
heterogeneity in topological and dynamical properties among
nodes in the network, it is more than likely that the influence
of each node on the network dynamics is quite different and
a small fraction of nodes have a disproportionate effect on
the stability of the whole system. Identifying influential nodes
is important in a series of problems, such as the detection of
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virulence genes and the optimal immunization of epidemic
spread [23–32].

Much progress has been made in identifying vitals nodes
in the dynamics of Boolean networks. According to previous
research, nodes in Boolean networks can be classified into three
categories: frozen, irrelevant, and relevant [33–35]. Frozen
nodes, whose corresponding update functions output constant
values, are naturally immune to any possible perturbations.
Irrelevant nodes, which can be identified through repeated
pruning steps of removing nodes that do not influence oth-
ers, have their dynamics completely determined by others.
Nodes in these two categories are considered not important,
while remaining nodes, also referred to as the relevant core,
decide the attractor of Boolean networks. Canalized Boolean
functions, whose outputs are fixed when one of inputs takes a
specific value, also play an important role in Boolean networks.
Researches found that some frozen nodes, combining with
nodes that have canalized update functions, can form the
structure of a self-freezing loop [35,36]. Although nonfrozen
nodes are included in a self-freezing loop, all nodes in the
loop become frozen after sufficient iterations. Therefore, nodes
in self-freezing loops have no influence on the dynamics of
Boolean networks either.

In this paper, our objective is to identify and control a
minimum set of nodes through which an unstable network can
be stabilized. First we construct a theoretical framework to
give a mathematical description of this problem. Then we map
this problem to the minimization of the largest eigenvalue of
a modified nonbacktracking matrix. Following the collective
influence theory designed for optimal percolation [23,37–39],
we propose the method of collective influence to identify
the minimum set of influential nodes. Different from other
methods such as PageRank [40] and k-core [41], the collective
influence takes into account not only topological features, but
also dynamical properties of nodes with respect to stability.
Simulation results on four different Boolean network models
show that our method outperforms traditional benchmark
algorithms. Besides, our method also has superior computa-
tional efficiency, making it applicable to large-scale Boolean
networks.

II. STABILITY OF BOOLEAN NETWORKS

A Boolean network consists of N nodes connected with
L directed edges. For each node i, its state, often denoted as
xi , can only be one of the following two states: on (1) or off
(0). Interactions among N nodes are defined by N Boolean
functions {f1,f2, . . . fN }, which are often referred to as update
functions. At time t , the state of the network can be represented
by an N -dimensional vector X(t) = (x1(t),x2(t), . . . xN (t)). At
time t + 1, its state X(t + 1) is determined by X(t) and update
functions. Take node i for an example, given that it has ki inputs
{i1,i2 . . . iki

}, its state at time t + 1 is then determined by

xi(t + 1) = fi(xi1 (t),xi2 (t), . . . xiki
(t)). (1)

If we denote the set of nodes that input into i as Xi =
(xi1 ,xi2 , . . . xiki

), the dynamics of the Boolean network can be
represented as

xi(t + 1) = fi(Xi(t)). (2)

The topology of the Boolean network is represented by the
adjacent matrix A, whose elements Aij = 1 if there exists
an edge from node i to j ; otherwise, Aij = 0. To define the
stability of Boolean networks, we consider two initial states of
the network X(t0) and X̃(t0). The Hamming distance between
these two states is defined as

H (t0) = 1

N

N∑
i=1

|xi(t0) − x̃i(t0)|. (3)

Let us suppose that N is large enough and the ini-
tial Hamming distance between X(t0) and X̃(t0) is close,
i.e., H (X(t0),X̃(t0)) � 1. The stability of Boolean networks
mainly concerns the behavior of H (t) as t → ∞. The network
is stable if H (t) is negligible as t → ∞, which indicates
the system will eventually go back to normal despite small
perturbations. Otherwise, the network is regarded unstable.
An unstable network usually fails to recover from a small
perturbation spontaneously, therefore an external input can
affect its dynamics dramatically.

The Hamming distance has its drawback as a measure of the
stability of Boolean networks. As illustrated in Refs. [33,34],
for a Boolean network with canalized update functions, its sta-
bility depends on the fraction of active nodes in the stationary
state. If the stationary state is an attractor in which nodes go
through a sequence of states with a period larger than 1, the key
parameter that decides stability is not constant. Furthermore,
different network copies can be in different phases of the
attractor. In this case, the normalized Hamming distance would
exhibit a periodic behavior. However, the measure of Hamming
distance provides at least a sufficient condition for stability, so
it remains proper in this paper.

III. OPTIMAL STABILIZATION THROUGH
COLLECTIVE INFLUENCE

In this section, we discuss the optimal stabilization problem
of Boolean networks. Previous research on the stability of
Boolean networks mainly focused on the criterion between
stable networks and unstable ones [18,19,21]. In a stable
Boolean network, small perturbations tend to vanish spon-
taneously as time evolves. Whereas, in an unstable network,
it can cause remarkable disturbance on the dynamics of the
whole system. To avoid this unfavorable property of unstable
Boolean networks, it is important to know whether we can
stabilize an unstable Boolean network by making some nodes
immune to any possible perturbations. If we were able to
immunize all nodes in the network, it is quite obvious that
every Boolean network could be stabilized. But what if we
could only immunize a fraction of nodes? How do we stabilize
a Boolean network by immunizing a set of nodes as small as
possible? Considering the great heterogeneity in topological
and dynamical properties among nodes in real biological
systems, we certainly do not expect the best strategy is to select
targets randomly. In this paper, our purpose is to identify the
minimum set of nodes whose immunization can stabilize an
unstable Boolean network. In the following paragraphs, this
problem is referred to as the optimal stabilization of Boolean
networks. The selected targets that are immune to perturbations
are defined as controllers.
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We start by proposing a mathematical description of the
optimal stabilization problem. We use μi to represent whether
a node i is a controller: μi = 0 if node i is controlled;
otherwise, μi = 1. Therefore, the vector μ = (μ1,μ2, . . . μN )
contains the information of selected controllers and we call it
a configuration of the network. The fraction of controllers in
the network is represented by

q = 1 − 1

N

N∑
i=1

μi = 1 − 〈μ〉. (4)

Regarding the stability of Boolean networks, we represent the
Hamming distance H as a function of q,

H (q) = 1

t̃

t∗+t̃∑
t=t∗

H (q,t) = 1

t̃N

t∗+t̃∑
t=t∗

N∑
i=1

[xi(t) − x̃i(t)], (5)

where t∗ and t̃ are large enough to pass any transient or periodic
behaviors. In a stable Boolean network, we can always expect
that 〈H (q)〉 = 0, where 〈·〉 stands for the average over all
initial values. In an unstable network, however, it always holds
〈H (q)〉 > 0. The optimal stabilization problem is to find the
minimum fraction qc of nodes and the corresponding optimal
configuration such that 〈H (qc)〉 = 0:

qc = min{q ∈ [0,1] : 〈H (q)〉 = 0}. (6)

For q � qc, there exist a variety of configurations which are
able to stabilize the Boolean network. In contrast, for q < qc,
the configuration that can stabilize the whole system does not
exist. As q decreasing from 1 to 0, the number of configurations
that satisfy 〈H (q)〉 = 0 also decreases and eventually vanishes
at qc.

Considering a single node in the network, it can be perturbed
only when it is not a controller and at least one of its
inputs has been perturbed. Therefore, the parameter μi itself
fails to measure the influence of perturbation. So we need
another variable encoding the information about whether a
node is perturbed or not. This information is stored in another
variable νi : νi = 1 if node i is perturbed; otherwise, νi = 0.
The influence of perturbation in the whole system is then
represented by the fraction of perturbed nodes, when q fraction
of the nodes in the configuration μ are controlled:

H (q,μ) = 1

N

N∑
i=1

νi. (7)

For a given q, the optimal stabilization of Boolean networks
requires to minimize the influence of perturbation over all
possible configurations. However, because an explicit function
of H (q,μ) is not available, it is difficult to select important
nodes in a Boolean network by minimizing H (q,μ) directly.
Instead, we transform this problem into minimizing the largest
eigenvalue of a modified non-backtracking matrix, which can
be represented analytically.

To derive the relation between ν = (ν1,ν2, . . . ,νN ) and μ =
(μ1,μ2, . . . μN ), we consider a directed edge from node i to j .
Suppose that node j is temporarily removed from the network
and we concern whether node i is perturbed. This information
is stored in a variable νi→j , which represents the probability
that node i is perturbed in the absence of j . Clearly, we can

conclude that νi→j = 0 if μi = 0. So we only consider the case
when μi = 1. Given that j is temporarily removed from the
network, node i is perturbed only because of the event “at least
one of the nodes pointing to node i other than j is perturbed.”
Assuming that the network is locally treelike, the variables
νi→j then satisfy the following message-passing equations:

νi→j = ρiμi

⎡
⎣1 −

∏
k∈∂i\j

(1 − νk→i)

⎤
⎦, (8)

where ρi represents the sensitivity of node i [42] and ∂i is the
set of nodes that input into i. Obviously, the system in Eq. (8)
admits the solution {νi→j = 0} for all i,j . As a result, the
impact of perturbation in the whole network H (q,μ) = 0. By
linearizing these equations and neglecting terms with higher
orders, we conclude that the stability of the solution {νi→j = 0}
depends on the largest eigenvalue of the linear operator of the
L × L matrix M̂ , whose elements can be represented in terms
of a nonbacktracking matrix B̂ [43,44]:

M̂k→l,i→j = μiρiB̂k→l,i→j , (9)

where

B̂k→l,i→j =
{

1 if l = i and j 	= k

0 otherwise.
(10)

We use λ(q,μ) to represent the largest eigenvalue of M̂ ,
which depends on the fraction of controllers q and the config-
uration of the network μ. According to the Frobenius theorem
[45], λ(q,μ) is real and positive. The stability of the solution
H (q,μ) = 0 is determined by the critical condition λ(qc,μ

∗) =
1, where μ∗ is the optimal configuration. When q < qc, for
each configuration μ λ(q,μ) > 1, hence it is impossible to
find a set of controllers such that H (q,μ) = 0. On the contrary,
when q > qc, there are two different possibilities. On one hand,
for some nonoptimal configurations we have λ(q,μ) > 1,
which are unable to stabilize the whole network; on the other
hand, there exist configurations that satisfy λ(q,μ) < 1, which
correspond to a stable solution of H (q,μ) = 0. As we approach
from above, q 
→ q+

c , the number of configurations satisfying
λ(q,μ) < 1 gradually decreases and eventually vanishes at qc.

Due to the complexity of Boolean network dynamics,
it is difficult to give an analytical description of λ(q,μ).
Our approach is to approximate λ(q,μ) with power method,
which converges to its exact solution after sufficient steps
of iterations. For a given configuration, we can use λ(μ) to
represent the largest eigenvalue of M̂ and the parameter q can
be omitted. Let us consider an arbitrary nonzero vector ω0.
For convenience, we suppose ω0 = (1,1, . . . 1)t and use ωl to
represent the result of ω0 after l iterations:

ωl = M̂lω0. (11)

According to power method, the largest eigenvalue of M̂

decides the growth rate of ω0; therefore, we can approximate
λ(μ) by calculating the growth rate of ωl as l → ∞:

λ(μ) = lim
l→∞

λl(μ) = lim
l→∞

(
|wl(μ)|
|w0| )

1
l . (12)

For a finite l, we map this problem to a many-body
interaction through which we can give an approximation of
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the norm of wl(μ) as (see Appendix A)

|wl(μ)|2 =
N∑

i=1

K in
i

∑
j∈∂Ball(i,l)

⎛
⎝ ∏

k∈Pl (i,j )

μkρk

⎞
⎠Kout

j , (13)

where Ball(i,l) consists of the nodes within a ball of radius
l from node i (defined as the shortest path), ∂Ball(i,l) is the
surface of the ball, and Pl(i,j ) is the shortest directed path
of length l from node i to j . Here, we define the collective
influence (CI) score of node i as

SCI
l (i) = K in

i

∑
j∈∂Ball(i,l)

⎛
⎝ ∏

k∈Pl (i,j )

μkρk

⎞
⎠Kout

j . (14)

Collective influence measures the contribution of each node
to the largest eigenvalue of M̂ , similar to the idea in Ref. [52]
developed based on the adjacent matrix. With this approxima-
tion, |wl(n)|2 is the sum of collective influence of all nodes:

|wl(μ)|2 =
N∑

i=1

SCI
l (i). (15)

To minimize λ(μ), our main idea is to take advantage
of the greedy algorithm and select one controller at a time.
At each step, we select the node with the highest collective
influence as a controller, which results in the biggest drop
in the value of |wl(n)|2. The selected controller is virtually
removed from the network before the next selection is made.
Then we continue this procedure until the network is finally
stabilized. One advantage of using the greedy algorithm is
that each time a controller is selected, the factors μi in the
formula of collective influence can be just ignored. Since
previously selected controllers have been virtually removed,
μi = 1 for every remaining node in the network. One problem
of collective influence is that a proper radius l still needs
to be specified. Intuitively, the performance of collective
influence is better with a larger radius l, but in the mean time
the computation complexity increases dramatically. When we
consider the case l = 0, we get SCI

0 (i) = K in
i qi , which is similar

to the high degree strategy. Previous works have proved this
strategy to be less than satisfying [27]. Thus, we go further
to consider the case l = 1, where the collective influence is
given by

SCI
1 (i) = K in

i ρi

∑
j∈�i

ρjK
out
j , (16)

where �i is the set of nodes that node i points to. SCI
1 (i)

consists of not only the in-degree of node i itself, but also
the topological information of its nearest neighbors. We can
expect a better performance when considering larger radii, but
the computation will be more time-consuming.

In general, the collective influence algorithm is scalable for
large networks with a computational complexity O(N log N ).
Computing the collective influence is equivalent to iteratively
visiting neighbors of each node layer by layer within a radius of
l. Since l is finite, it takes O(1) time to compute the collective
influence of each node. Initially, we have to calculate the col-
lective influence for all nodes in the network. However, during
later steps, we only need to recalculate for nodes within a l + 1

radius from the selected controllers, which scales as O(N ).
When it comes to selecting the node with the highest collective
influence, we can make use of the data structure of heap that
takes O(log N ) time. Therefore, the overall complexity of the
collective influence algorithm is O(N log N ). In the following
section, we take SCI

1 as the representative of collective influence
and discuss its performance compared with other algorithms.

Similar to the idea proposed in Ref. [53], the contribution
of an individual node to the largest eigenvalue λ(μ) can also
be approximated with the left and right eigenvalues of M̂ .
With this approximation, the optimal stabilization problem
can also be solved using the cavity method. This provides a
competitive result with our collective influence algorithm, but
at much higher computation expense. Details are exhibited in
Appendix B.

IV. NUMERICAL SIMULATIONS

In this section, we construct four different Boolean networks
on which we can test the performance of collective influence
algorithm. First we consider Kauffman’s N -K network model,
where all nodes have exactly K inputs randomly selected
from the other N − 1 nodes. The degree distribution of the
N -K network model does not show much heterogeneity,
which is quite different from real genetic regulatory networks.
Considering that real genetic regulatory networks usually
have short tailed in-degree distributions and long-tailed out-
degree distributions [46,47], we construct the second network
with Poisson distributed in-degrees and scale-free out-degrees.
These two networks above are typical toy models of Boolean
networks. The following two networks are constructed using
data from real-world systems. The third network captures the
innovation spread among 241 physicians in four towns of
Illinois: Peoria, Bloomington, Quincy, and Galesburg [48].
The last network was created from a survey on the social
relationship among adolescents [49]. On each of the above four
networks, update functions are given in the form of truth tables.
For any inputs of fi , its corresponding output is randomly
chosen from {0,1} with probability 0.5. As a result, all nodes
in the networks have a common sensitivity ρi ≡ ρ ≡ 0.5.

On each network, we compare the performance of collective
influence with the following methods: high degree (HD)
[50], eigenvector centrality (EC) [51], Google PageRank (PR)
[40], voter rank (VR) [26], and degree product, which have
been proved useful in detecting influential nodes in complex
networks. High degree strategy, as its name implies, defines the
influence of a node i with its degree. Here, we choose K in

i as the
degree rank of node i. To get a better performance, we adopt
the adaptive version of high degree method (HDA). After each
selection, the degree of each node is recalculated. However, as
mentioned in various studies, nodes with high degree do not
necessarily possess high influence. The eigenvector centrality
fixes this problem by considering not only the number of a
node’s neighbors, but also the influence of its neighbors, known
as the mutual enhancement effect. For each node i, its score of
eigenvector centrality SEC(i) is given by

SEC(i) =
∑

j

AijS
EC(j ). (17)
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PageRank is a famous algorithm that is used to rank websites
in google search engines and other commercial scenarios.
According to the Page rank algorithm, the influence of a
webpage is determined by random walking on the network
of web pages. Mathematically, the PageRank score of node
i is

SPR(i) =
∑

j

Aij

SPR(j )

kout
j

. (18)

Due to the ubiquitous existence of community structure in
complex networks, influential nodes in complex networks are
more likely to connect with each other, which result in the fact
that their sphere of influence tend to overlap. To avoid such
condition, in the voter rank algorithm, each node is granted an
initial voting ability θi and the score of voter rank is calculated
as

SVR(i) =
∑

j

Aij θj . (19)

At each step, the voter rank selects one single node with the
highest voting score. Then the vote abilities of its neighbors
spontaneously decrease. Therefore, the nodes nearby are less
likely to be chosen in the following process and the selected
nodes are less likely to be close to each other. Degree product is
constructed by minimizing the largest eigenvalue λQ proposed
in Ref. [15] with the cavity method. At each step, the score of
each node is calculated as SDP(i) = ρiK

in
i Kout

i . Since ρi ≡ ρ,
this can simply be replace by SDP(i) = K in

i Kout
i .

For each algorithm, we start from q = 0 and pick the con-
trollers one after another until q = 0.2. Each time a controller
is chosen, we calculate the average Hamming distance 〈H 〉 to
see whether or not the network has been stabilized.

As for the calculation of Hamming distance 〈H 〉, we take it
as the average of 100 initial values. For each initial value, H is
calculated through the following procedure. First, we randomly
generate an initial value X(t) and evolve it according to update
functions until t0 = 100, where we expect it to have completed
any transient behaviors. Next, we chose a small fraction
(ε = 0.01) of its components and flip their states to create
a perturbed value X̃(t0). In other words, x̃i(t0) = 1 − xi(t0)
if node i is perturbed, otherwise x̃i(t0) = xi(t0). The initial
Hamming distance is H (X(t0),X̃(t0)) = 0.01. Finally, we take
X(t0) and X̃(t0) as the initial values and evolve both of them in
parallel. Here we stress that for nodes that have been chosen
as controllers, their states in both orbits are always the same,
since controllers are immune to any perturbations. Our main
interest is the long-time behavior of H , which is calculated by
averaging H (X(t), ˜X(t)) from t = 400 to t = 500. This whole
procedure is repeated and 〈H 〉 is the average of H over all
initial values.

From Fig. 1 we can see the performance of the six algorithms
mentioned above in Kauffman’s N -K network model. The
network consists of N = 20 000 nodes and its average degree
K = 3. For each algorithm, the average Hamming distance
〈H 〉 decreases with the increase of the fraction of controllers q.
During the process, collective influence outperforms the other
five algorithms and stabilizes the network with the minimal
fraction of controllers qCI

c ≈ 0.13, followed by high degree and
degree product that stabilize the network atqHD

c ≈ qDP
c ≈ 0.17.
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FIG. 1. Normalized average Hamming distance 〈H 〉 plotted
against the fraction of controllers q in N -K network. The network
consists of 20 000 nodes and its average degree is 3. The performances
of collective influence, high degree, eigenvector centrality, PageRank,
voter rank, and degree product are represented in different colors. The
small panel shows the results of qc with the increase of average degree.

As for the other three algorithms, their performances are
rather close. The average Hamming distance remains 〈H 〉 ≈
0.15 even when q = 0.2 of nodes in the network are under
control. One interesting phenomenon shown in Fig. 1 is that
the performance of high degree beats those more complex
algorithms like eigenvector centrality, PageRank, and voter
rank, which usually perform quite well. One possible reason
could lie in the difference between optimal stabilization of
Boolean networks and those rank problems for which these
algorithms are designed. In these three algorithms, a node
usually exhibits higher importance if it is pointed by more
nodes with higher importance themselves. However, in the
problem of optimal stabilization, it is much the opposite. In
this problem, one node enjoys higher influence by pointing
to more nodes with higher influence. The small panel shows
that with the average degree of the N -K increases, the minimal
fraction of controllers qc increases as well. During the process,
collective influence still outperforms other algorithms.

In Fig. 2, we show the performances of the six algorithms on
a heterogeneous network. The networks is constructed using
the configuration model, which consists of 1000 nodes with
average degree 3. Figure 2 shows that with the increase of the
fraction of controllers q, the network reaches stable region first
at qCI

c ≈ 0.03 when collective influence is applied. The degree
product performs competitively with qDP

c ≈ 0.04. Again, the
high degree strategy outperforms other three algorithms and
stabilizes the network at qHD

c ≈ 0.07. The performances of
eigenvector centrality, PageRank and voter rank are similar,
which can not stabilize the network until q = 0.14. When we
compare Figs. 1 and 2, it is interesting that although these
two networks have the same average degree, an algorithm
can behave quite differently on the two networks. In general,
an algorithm can achieve stabilization with a much smaller
fraction of controllers in the heterogeneous network, since
it is easier to control the dynamics of the whole system
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FIG. 2. Normalized average Hamming distance 〈H 〉 plotted
against the fraction of controllers q in a heterogeneous network.
The networks is constructed using the configuration model. The
in-degrees of nodes follow a Poisson distribution and the out-degrees
are scale-free. The network consists of 1000 nodes and its average
degree is 3. The performances of collective influence, high degree,
eigenvector centrality, PageRank, voter rank, and degree product are
represented in different colors.

if the network exhibits more topological heterogeneity. In
Kauffman’s N -K network model, however, the importance of
nodes is quite similar to each other, thus it is unlikely to achieve
stabilization by simply controlling a small fraction of them.

Figures 3 and 4 show the performances of the six algorithms
when applied to real-world networks [48,49]. In Fig. 3, each
node in the network represents a physician and each directed
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FIG. 3. Normalized average Hamming distance 〈H 〉 plotted
against the fraction of controllers q in the physician network. The
network consists of 241 nodes and 1098 edges. The performances of
collective influence, high degree, eigenvector centrality, PageRank,
voter rank, and degree product are represented in different colors.
Simulations are performed for an initial Hamming distance H (t0) =
0.01 and the results of 〈H 〉 are averaged over 100 random initial
values.
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FIG. 4. Normalized average Hamming distance 〈H 〉 plotted
against the fraction of controllers q in student social network.
The network consists of 1000 nodes and 4175 edges, which is
part of the adolescent social network constructed from the survey.
The performances of collective influence, high degree, eigenvector
centrality, PageRank, voter rank, and degree product are represented
in different colors. The small panel shows the performance of the
collective influence algorithm when larger radii are applied.

edge from node i to node j shows that physician i regards
physician j as his friend or he turns to j if he needs advice
or is interested in a discussion. There always only exists one
edge between two nodes even if more than one of the listed
conditions are true. The network in Fig. 4 is created from a
survey including 2539 students. In the survey, each student was
asked to list his five best female and five male friends. Each
node represents a student and an edge from node i to j means
that student i regards student j as a friend. In the simulation,
we choose part of the network that contains 1000 students
among them. As is shown in Figs. 3 and 4, collective influence
outperforms the other algorithms in both networks. In Fig. 3,
the physician network becomes stable at qCI

c ≈ 0.15 when
collective influence is applied, followed by eigenvector cen-
trality which achieves stable region at qEC

c ≈ 0.18. According
to Fig. 4, collective influence and degree product are the only
algorithms that are able to achieve stabilization of adolescent
social network, while for the other four algorithms, the network
will not be stabilized even at q = 0.2. However, collective
influence still outperforms degree product with qCI

c ≈ 0.16
and qDP

c ≈ 0.18. We continue to compare the performances of
collective influence when l = 1, l = 2, and l = 3, the results
in the inset show that the performance of collective influence
algorithm improves with a larger radius l, but the improvement
is rather limited.

V. CONCLUSION

In this paper, we study the optimal stabilization problem of
Boolean networks, which aims to identify the minimal set of
influential nodes whose immunization is capable of stabilizing
an unstable Boolean network. Since it is difficult to represent
the average Hamming distance as a function of network
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configuration, we transform this problem into minimizing the
largest eigenvalue of a modified nonbacktracking matrix that
determines the stability of Boolean networks. We propose
collective influence that enables us to identify influential
nodes with respect to the stability of Boolean networks. To
test the performance of collective influence, we construct
two toy networks and two real-world networks on which we
compare the performance of collective influence with other
five algorithms: high degree, eigenvector centrality, PageRank,
voter rank, and degree product. The results show that in all
four networks, our collective influence algorithm outperforms
others by stabilizing the networks with a smaller fraction of
controllers. We also find that it is easier to stabilize a Boolean
network with more heterogeneity. Our work may contribute to
the identification of virulence genes that cause serious inherited
diseases. Besides, it also provides a new insight into the
mechanism that determines the stability of Boolean networks,
which is useful to control dynamics in a series of real biological
systems.

APPENDIX A

In this Appendix we present the details of approximations
of λl(μ), which eventually converges to λ(μ) as l → ∞. The
indices of M̂ correspond to directed edges of the network and
its elements contain the information of connections between
these edges. For computation convenience, we embed it into
an N × N × N × N matrix M:

Mijkl = μkρkAijAklδjk(1 − δil), (A1)

where i, j, k, and l all vary from 1 to N . M encodes the
same information with M̂ in a higher dimension, but its
indices correspond to nodes in the network, which is similar
to the adjacent matrix. As for the L-dimensional initial vector
ω0 whose elements are all 1, its projection in the enlarged
N × N × N × N space is an N × N vector, whose elements
are given by |w0〉ij = Aij . Given the topology of the Boolean
network, we can calculate the right vector |ω1(μ)〉 as

|w1〉ij =
∑
kl

Mijkl|w0〉kl . (A2)

Combining Eqs. (A1) and (A2), we conclude that

|w1〉ij =
∑
kl

μkρkAijAklδjk(1 − δil)Akl. (A3)

For each term after the summation symbol in Eq. (A3), it is
nonzero only when j = k and i 	= l. Considering our locally
treelike assumption, the right vector |w1(μ)〉 can be calculated
as

|w1〉ij = μjρjAijK
out
j . (A4)

Similarly, the left vector 〈w1(μ)| can be calculated as

ij 〈w1| =
∑
kl

kl〈w0|Mklij = μiρiAijK
in
i . (A5)

Using the left and right vectors, we can write the expression
of the norm of |w1(μ)| as

|w1(μ)|2 =
∑
ij

ij 〈w1|w1〉ij

=
∑
ij

μjρjAijK
out
j μiρiAijK

in
i

=
∑
ij

μiμjρiρjAijK
in
i Kout

j . (A6)

The norm of ω0 can be easily calculated as

|w0(μ)|2 =
∑
ij

ij 〈w0|w0〉ij = L. (A7)

According to Eq. (12), we can finally give the mathematical
formula of λ1(μ):

λ1(μ) =
⎛
⎝ 1

L

∑
ij

μiμjρiρjAijK
in
i Kout

j

⎞
⎠

1
2

. (A8)

Similarly, we can calculate the right vector |w2(μ)〉 as

|w2〉ij =
∑
kl

Mijkl|w1〉kl

= μjρjAij

∑
l

AjlμlρlK
out
l (1 − δil), (A9)

while its left vector 〈w2(μ)| is given by

ij 〈w2| =
∑
kl

kl〈w1|Mklij

= μiρiAij

∑
k

μkρkAkiK
in
k (1 − δjk). (A10)

Thus, we can calculate the norm of |w2(μ)|:
|w2(μ)|2 =

∑
ij

ij 〈w2|w2〉ij

=
∑
ijkl

μiρiμjρjμkρkμlρlAijAjkAkl

×K in
i Kout

l (1 − δik)(1 − δjl). (A11)

We are able to represent λ2(μ) as

λ2(μ) =
⎡
⎣ 1

L

∑
ijkl

μiρiμjρjμkρkμlρlAijAjkAkl

×K in
i Kout

l (1 − δik)(1 − δjl)

⎤
⎦

1
4

. (A12)

From the formulas of λ1(μ) and λ2(μ), we can write
down higher orders of interactions λn(μ) [23]. The order of
interaction is defined as the number of nodes appearing in
it. In the case l = 1, λ1 corresponds to a two-body problem
concerning i and j . In the interaction, since node i points
a directed edge to node j , the variables μiρi and μjρj are
multiplied by each other. This factor is then multiplied by the
in-degree of the initial node and the out-degree of the ending
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FIG. 5. Normalized average Hamming distance 〈H 〉 plotted
against the fraction of controllers q in (a) Kauffman’s model with N =
5000 and K = 3; (b) configuration model with Poisson distributed in-
degrees and scale-free out-degrees; (c) physician network consisting
of 241 nodes and 1098 edges; (d) student social network with 1000
nodes and 4175 edges.

node of the edge, which equals to μiρiμjρjK
in
i Kout

j . As for
the case l = 2, we can find similarly that λ2 corresponds to
a l = 2 nonbacktracking walk on Boolean networks, which is
a four-body problem if i 	= l, or a three-body problem when
i = l. Here, the series expansion of the maximum eigenvalue
can be written in terms of a systematic diagrammatic expansion
of increasing levels of multibody interactions. Typically, λl

corresponds to a nonbacktracking walk of length l, which can
involve as much as 2l nodes in the interaction. We stress that
the initial and final nodes of the nonbacktracking walks do
not necessarily need to be different, since loops are allowed in
nonbacktracking walks. However, due to the fact that most
networks in the real world are sparse and locally treelike,
we decide that those nonbacktracking walks with loops are
negligible and each nonbacktracking walk from node i to j is

in fact a shortest path between the two nodes. Thus, the norm
of |wl(μ)| can be represented as

|wl(μ)|2 =
N∑

i=1

K in
i

∑
j∈∂Ball(i,l)

⎛
⎝ ∏

k∈Pl (i,j )

μkρk

⎞
⎠Kout

j . (A13)

APPENDIX B

In this Appendix we present an alternative approach to
minimize the largest eigenvalue λ(μ). Following the cavity
method (CM) proposed in Ref. [53], the importance of node i

can be measured by the amount −�λi by which λ decreases
upon removal of the node, normalized by λ: SCM(i) = −�λi

λ
.

Given the left eigenvector φ and right eigenvector ϕ of M̂ ,
where M̂ϕ = λ(μ)ϕ and φT M̂ = λ(μ)φT , we consider the
perturbation after the removal of a single node i. Denote the
matrix after the removal by M̂ + �M̂i , the largest eigenvalue
of M̂ + �M̂i by λ + �λi and its corresponding right eigen-
vector by ϕ + �ϕi . We obtain that

(M̂ + �M̂i)(ϕ + �ϕi) = (λ + �λi)(ϕ + �ϕi). (B1)

For large matrices, it is reasonable to assume that the
removal of a link or node as a small effect on the spectral
properties of the network. Left multiplying Eq. (B1) by left
eigenvector φT and neglecting second-order terms, we can
obtain that

�λi = φT �M̂iϕ

φT ϕ
. (B2)

At each step, we greedily control the node with the highest
�λi . After that, the eigenvectorsλ andϕ are recalculated before
another node is selected. We test the performance of the cavity
method on the four networks mentioned above. Here we use a
smaller N -K network model with N = 5000 instead. Results
in Fig. 5 show that in most cases the performance of collective
influence algorithm outperforms the cavity method. Specially,
in the heterogeneous network with Poisson distributed in-
degrees and scale-free out-degrees, the performance of cavity
method is competitive with collective influence algorithm.
However, the computational complexity of collective influence
is much lower.
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